STANDARD ELECTRODE POTENTIALS

Ionic Concentrations 1 M Water At 298 K, 1 atm

	ix, 1 aun
Half-Reaction	E^0
	(volts)
$F_2(g) + 2e^- \rightarrow 2F^-$	+2.87
$8H^+ + MnO_4^- + 5e^ Mn^{2+} + 4H_2O$	+1.51
$Au^{3+} + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2(g) + 2e^- \rightarrow 2Cl^-$	+1.36
$14H^{+} + Cr_{2}O_{7}^{2-} + 6e^{-} - 2Cr^{3+} + 7H_{2}O_{7}^{2-}$	+1.23
$4H^{+} + O_{2}(g) + 4e^{-} - 2H_{2}O$	+1.23
$4H^{+} + MnO_{2}(s) + 2e^{-} - Mn^{2+} + 2H_{2}O$	+1.22
$Br_2(\ell) + 2e^- \rightarrow 2Br^-$	+1.09
$Hg^{2+} + 2e^{-} \rightarrow Hg(\ell)$	+0.85
$Ag^+ + e^ Ag(s)$	+0.80
$Hg_2^{2+} + 2e^ 2Hg(\ell)$	+0.80
$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	+0.77
$I_2(s) + 2e^ 2I^-$	+0.54
$Cu^+ + e^ Cu(s)$	+0.52
$Cu^{2+} + 2e^{-} - Cu(s)$	+0.34
$4H^{+} + SO_{4}^{2-} + 2e^{-} - SO_{2}(aq) + 2H_{2}O$	+0.17
$\operatorname{Sn}^{4+} + 2e^{-} - \operatorname{Sn}^{2+}$	+0.15
$2H^{+} + 2e^{-} - H_{2}(g)$	0.00
$Pb^{2+} + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+} + 2e^{-} - \operatorname{Sn}(s)$	-0.14
$Ni^{2+} + 2e^- \rightarrow Ni(s)$	-0.26
$Co^{2+} + 2e^{-} - Co(s)$	-0.28
$Fe^{2+} + 2e^{-} - Fe(s)$	-0.45
$\operatorname{Cr}^{3+} + 3e^{-} - \operatorname{Cr}(s)$	-0.74
$Zn^{2+} + 2e^{-} - Zn(s)$	-0.76
$2H_2O + 2e^ 2OH^- + H_2(g)$	-0.83
$Mn^{2+} + 2e^{-} - Mn(s)$	-1.19
$Al^{3+} + 3e^{-} - Al(s)$	-1.66
$Mg^{2+} + 2e^{-} \rightarrow Mg(s)$ $Na^{+} + e^{-} \rightarrow Na(s)$	-2.37
$Na + e \rightarrow Na(s)$	-2.71
$Ca^{2+} + 2e^{-} - Ca(s)$	-2.87
$Sr^{2+} + 2e^{-} - Sr(s)$ $Ba^{2+} + 2e^{-} - Ba(s)$	-2.89
Ba + 2e - Ba(s)	-2.91
$Cs^+ + e^ Cs(s)$ $K^+ + e^ K(s)$	-2.92
$\begin{array}{ccc} & & + & & & \times (s) \\ & & & + & & & \times (s) \\ & & & & + & & & & \times (s) \end{array}$	-2.93
$\begin{array}{ccc} & + e & - Rb(s) \\ \text{Li}^+ + e^- & - \text{Li}(s) \end{array}$	-2.98
L₁ ⊤ c = L1(s)	-3.04

VAI	OR PRESSU	RE OF V	VATER
°C	torr (mmHg)	°C	torr (mmHg)
0	4.6	26	25,2
5	6.5	27	26.7
10	9.2	28	28.3
15	12.8	29	30.0
16	13.6	30	31.8
17	14.5	40	55.3
18	15.5	50	92.5
19	16.5	60	149.4
20	17.5	70	233.7
21	18.7	80	355.1
22	19.8	90	525.8
23	21.1	100	760.0
24	22.4	105	906.1
25	23.8	110	1074.6

Base your answers to questions 1 and 2 on the equation and diagram below represent an electrochemical cell at 298 K and 1 atmosphere.

- 1. Which species is oxidized when the switch is closed?
 - (1) Mg(s)
- (3) Ag(s)
- (2) Mg^{2+} (aq)
- (4) Ag⁺(aq)
- 2. When the switch is closed, electrons flow from
 - (1) $Mg^{2+}(aq)$ to $Ag^{+}(aq)$
- (3) Mg(s) to Ag(s)
- (2) $Ag^{+}(aq)$ to $Mg^{2+}(aq)$
- (4) Ag(s) to Mg(s)
- 3. Based on Reference Table J, which reaction will take place spontaneously?

(1)
$$Pb + 2 H^{+} \rightarrow Pb^{2+} + H_{2}$$

(2)
$$2 \text{ Ag} + 2 \text{ H}^+ \rightarrow 2 \text{ Ag}^+ + \text{H}_2$$

(3)
$$Cu + 2 H^+ \rightarrow Cu^{2+} + H_2$$

(4)
$$2 \text{ Au} + 6 \text{ H}^+ \rightarrow 2 \text{ Au}^{3+} + 3 \text{ H}_2$$

4. Given the reaction:

$$Ni(s) + 2 Fe^{3+}(aq) \rightarrow Ni^{2+}(aq) + 2 Fe^{2+}(aq)$$

What is the net potential (E^0) for the overall reaction?

- (1) +0.51 V
- (3) -1.03 V
- (2) +1.03 V
- (4) -0.51 V
- 5. In a chemical cell composed of two half-cells, ions are allowed to flow from one half-cell to another by means of
 - (1) electrodes
- (3) a voltmeter
- (2) an external conductor
- (4) a salt bridge

Base your answers to questions 6 and 7 on the diagram below which represents a chemical cell at 298 K and 1 atmosphere.

- 6. Which species represents the cathode?
 - (1) Cu

(3) Zn

(2) Zn²⁺

- (4) Cu^{2+}
- 7. When switch S is closed, electrons in the external circuit will flow from
 - (1) Zn to Cu
- (3) Cu to Zn^{2+}
- (2) Cu to Zn
- (4) $Zn \text{ to } Zn^{2+}$
- 8. Which statement describes the redox reaction that occurs when an object is electroplated?
 - (1) It is non-spontaneous and requires an electric current.
 - (2) It is spontaneous and requires an electric current.
 - (3) It is non-spontaneous and produces an electric current.
 - (4) It is spontaneous and produces an electric current.
- 9. In order for a redox reaction to be spontaneous, the potential (E°) for the overall reaction must be
 - (1) between zero and -1
- (3) zero
- (2) greater than zero
- (4) less than -1

10. The diagram below represents an electrochemical cell.

When switch S is closed, which particles undergo reduction?

- (1) Cu atoms
- (3) Zn^{2+} ions
- (2) Cu2+ ions
- (4) Zn atoms

11. Given the reaction:

$$2 \text{ Au}^{3+}(aq) + 3 \text{ Ni}^{\circ} \rightarrow 2 \text{ Au}^{\circ} + 3 \text{ Ni}^{2+}(aq)$$

The cell potential (E°) for the overall reaction is

- (1) 2.22 volts
- (3) 3.78 volts
- (2) 1.76 volts
- (4) 1.24 volts

12. The diagram below represents a chemical cell.

In order for the cell to operate, it should be provided with

- (1) an anode
- (2) a salt bridge
- (3) an external path for electrons
- (4) a cathode

13. An electrolytic cell is different from an electrochemical cell because in an electrolytic cell

- (1) a spontaneous reaction occurs
- (2) a redox reaction occurs
- (3) an electric current is produced
- (4) an electric current causes a chemical reaction

14. A standard zinc half-cell is connected to a standard copper half cell by means of a wire and a salt bridge. Which electronic equation represents the oxidation reaction that takes place?

(1)
$$Cu^0 - 2e^- \rightarrow Cu^{2+}$$

(1)
$$Cu^0 - 2e^- \rightarrow Cu^{2+}$$
 (3) $Cu^{2+} + 2e^- \rightarrow Cu^0$

(2)
$$Zn^{2+} + 2e^{-} \rightarrow Zn^{0}$$
 (4) $Zn^{0} - 2e^{-} \rightarrow Zn^{2+}$

$$(4) Zn^0 - 2e^- \rightarrow Zn^{24}$$

15. Given the reaction:

$$2 \text{ Na(s)} + \text{Cl}_2(g) \rightarrow 2 \text{ Na}^+ + 2 \text{ Cl}^-$$

Based on Reference Table X, what is the potential (Eo) for the overall reaction?

Red Cat gets fat and

Base your answers to questions 16 and 17 on the diagram of the chemical cell shown below. The reaction occurs at 1 atmosphere and 298 K.

- 16. When the switch is closed, what occurs?
 - (1) Pb is reduced and electrons flow to the Zn electrode.
 - (2) Zn is oxidized and electrons flow to the Pb electrode.
 - (3) Pb is oxidized and electrons flow to the Zn electrode.
 - (4) Zn is reduced and electrons flow to the Pb electrode.
- 17. When the switch is closed, the cell voltage (E^0) is
 - (1) +0.63 V
- (3) -0.63 V
- (2) +0.89 V
- (4) -0.89 V

Base your answers to questions 18 and 19 on the diagram below which represents the electroplating of a metal fork with Ag(s).

- 18. Which equation represents the half-reaction that takes place at the fork?
 - (1) $Ag(s) \rightarrow Ag^+ + e^-$
 - (2) $Ag^+ + e^- \rightarrow Ag(s)$
 - (3) $AgNO_3 \rightarrow Ag^+ + NO_3^-$
 - (4) $Ag^+ + NO_3^- \rightarrow AgNO_3$
- 19. Which part of the electroplating system is provided by the fork?
 - (1) the cathode, which is the negative electrode
 - (2) the anode, which is the negative electrode
 - (3) the anode, which is the positive electrode
 - (4) the cathode, which is the positive electrode
- 20. Which statement is true about oxidation and reduction in an electrochemical cell?
 - (1) Both occur at the anode.
 - (2) Oxidation occurs at the cathode and reduction occurs at the anode.
 - (3) Both occur at the cathode.
 - (4) Oxidation occurs at the anode and reduction occurs at the cathode.

©	SCANTRON	CORPORATION 2	800		_		_	
	L RIGHTS R			III KIII		11		
	T F 51 🕟 ②	345 i	76	T F		M	ARK	1
	52 ① ②	4 5 3		120				
		3 4 5 1	78	12	3 4	5		
		3 4 5 2	79	12	3 4	5		
		3 4 5 1		120		_		
	57 🜒 ②	3451		120				
	58 🜘 ②	3 4 5 1		120		_		
	85 15	3 4 5 2 3 4 5 2	84	12(3 4	(5)		
	- 1.35	3452	85	12(3 4	5		1
	62 ① 📵	3 4 5 2		020		_		
	63 ① ②	3 6 5 4		(1) (2)(1) (2)		_		
		3 6 5 4	89	12(3 4	5		
		3 4 5 ₂	90	12(3 4	5		
	V20	3 4 5 1		120		_		
	68 ① 🗶	345 2		120				
		3451		120				
		3 (a) (5)	95	12(3 4	5		
		345		120				
	73 ① ②	3 4 5		120 120				
	74 (1) (2)	30B	30		יש ש	٣		

SCORE	20	# CORRECT
SCORE	100	% CORRECT
RESCORE		# CORRECT
NESCORE		% CORRECT
ROSTER	K	SCORE
NUMBER	Y Y	RESCORE

74 1 2 3 4 5

75 (1) (2) (3) (4) (5)

Redox 2 test V-3

DO NOT

WRITE

IN

THIS

AREA

Reorder Form No. 19634 1-800-367-6627 Fax 1-949-639-7710 www.ScantronStore.com

For use with Sentry®, OpScan®, and iNSIGHT™ scanners

99 1 2 3 4 5

100 1 2 3 4 5

SCANTRON